PicoScope 4444

High-resolution differential USB oscilloscope.

High-resolution differential USB oscilloscope

The PicoScope 4444 and its accessories offer accurate and detailed measurement for a multitude of applications.

Key features

  • 4 fully differential high-impedance inputs
  • 20 MHz bandwidth
  • Flexible 12 and 14-bit resolution
  • 256 MS deep memory
  • Rejects common-mode noise
  • Interface for intelligent probes and clamps
  • Low-voltage probe for millivolts to 50 V
  • 1000 V CAT III voltage and current probes for mains measurement applications

Typical applications

  • Non-ground-referenced measurements
  • Safe probing of single-phase and three-phase voltages and currents
  • Measuring power drawn by mobile and IoT devices
  • Mains quality testing
  • SMPS design
  • Hybrid and electric vehicle design
  • Motor drives and inverters
  • Biomedical electronics
  • Measuring differential signals (CAN, balanced audio) with a single channel

High-end oscilloscope

At the heart of every PicoScope 4444 is an advanced oscilloscope that offers everything you would expect and much more, including:

  • 10 000 waveform circular buffer
  • Up to 100 000 waveforms per second update rate
  • Serial bus decoding
  • Mask limit testing
  • Advanced math and filtering
  • Measurements with statistics
  • Advanced digital triggering
  • USB 3.0 connected and powered

More details on the above and many other options can be found under the Features tab.

Intelligent differential inputs

With a traditional oscilloscope probe, single-ended measurements are made between a high-impedance input and a low-impedance ground.

With a differential oscilloscope, measurements are made between two high-impedance inputs, allowing measurements to be made across components and test points where neither side is grounded. Differential inputs also reject common-mode noise: noise picked up equally on both high-impedance inputs is rejected.

Each of the four input channels on the PicoScope 4444 features an intelligent probe interface that detects and identifies compatible probes, and powers them where necessary. Each channel can have its own choice of voltage or current probe.

Non-attenuating probes allow high-resolution, low-noise measurement of signals ranging from millivolts to ±50 V. Attenuating probes allow signals up to 1000 V CAT III to be measured. Current probes are available for currents up to 2000 A, also rated for 1000 V CAT III measurements.

Differential input oscilloscope

PicoConnect 441: Measure from millivolts to ±50 V

The PicoConnect 441 differential voltage probes are suitable for voltages up to ±50 V (for higher voltages see the PicoConnect 442). The probes are fitted with industry-standard 4 mm connectors and supplied with detachable sprung hook probe tips. Other 4 mm accessories such as multimeter probes and crocodile clips are available separately.

As well as measuring non-grounded voltage signals, differential inputs are ideal for measuring current through sensing resistors. As neither side needs to be grounded, they can make high-side measurements. The sensitive input ranges, high resolution and fast sampling are ideal for measuring fast-changing currents in battery-powered and IoT devices.


D9 to 4mm probe

Human heartbeat captured on PicoScope 4444

The high-impedance, high-resolution inputs are also suited to biological and scientific research, as they allow measurements on low-level millivolt signals (2 mV/div at 12 bits) in the presence of common-mode noise without the need for expensive differential preamplifiers or differential oscilloscope probes. The probe is constructed with twinax cable (twisted-pair inner conductors with an outer shield) to ensure a high common-mode rejection ratio (CMRR). The outer screen of the cable can optionally be connected to a signal ground to improve rejection of common mode voltages and currents.

The PicoConnect 441 probes are also ideal for measuring differential signal sources such as CAN bus and balanced audio on a single channel, and can be used to directly measure from bridge-type sensors such as load cells and pressure sensors.

PicoConnect 441 probes are ideal for work with low voltage SMPS, PicoConnect 442 (shown) for voltages up to 1000 V.

Human heartbeat captured on oscilloscope

PicoConnect 442: 1000 V CAT III probes

The PicoConnect 442 is an attenuating differential voltage probe that increases the input range to 1000 V to allow the safe and cost-effective measurement of single-phase, three-phase and other signals, such as those found in motor drives and inverters.

The PicoConnect 442 probe requires no power supply or batteries. This makes it ideal for mains quality measurement and other long-term measurements.

The differential inputs of the PicoScope 4444 allow each channel to measure signals with different common-mode voltages. As an example, consider the battery pack in an electric vehicle. You can measure across the whole pack using one channel set to an input range of ±500 V, and at the same time set the other channels to ±5 V to measure across individual cells. This arrangement allows you to take advantage of the full resolution of the oscilloscope.

Switch mode power supply waveforms

Three current probes with intelligent probe interface

Three different current probes are available with Pico D9 interfaces. TA300 and TA301 use the Hall effect to measure AC and DC currents without direct connection to the cable, and the TA368 uses the Rogowski principle for AC-only measurements. The intelligent probe interface powers the probes, so no batteries are required. It also means that when you connect either probe, the PicoScope software identifies it and configures the oscilloscope to read in amperes.

The TA300 current probe is a 40 A probe suitable for measuring signals from DC to 100 kHz. It is a precision probe for smaller currents and can resolve down to a few milliamps.

2000A AC/DC current clamp

Read more about the TA300 40 A AC/DC current probe

The TA301 current probe is a switched-range 200/2000 A probe suitable for measuring signals from DC to 20 kHz bandwidth.

Read more about the TA301 2000 A AC/DC current probe

The TA368 current probe is a single-range 2000 A AC probe suited for measuring signals above DC to 20 kHz, and because the probe is rated to 1000 V CAT III, it is ideal for making mains current measurements.

Read more about the TA368 2000 A AC current probe

In addition to the above probes, Pico stocks a wide range of AC and DC current clamps with BNC connectors that can be connected to the PicoScope 4444 using the TA271 D9 to BNC adaptor.


Powerful and portable

Just load the software, plug in the USB cable and you are up and running in minutes. Saving and printing are easy: PicoScope users can take copying waveforms into reports for granted.

On the bench, a PicoScope saves valuable space and can be placed right by the unit under test.

Laptop users benefit even more: with no power supply required you can now carry an oscilloscope with you all the time in your laptop bag. Perfect for the engineer on the move.

With our scopes, high-end features such as serial decoding, mask limit testing, advanced math channels and segmented memory are all included in the price.

To protect your investment, both the PC software and firmware inside the scope can be updated. Pico has a 26-year history of providing new features for free through software downloads. We deliver on our promises of future enhancements year after year.

Users of our products reward us by becoming lifelong customers and frequently recommending us to their colleagues.


  Oscilloscope specifications Specifications with PicoConnect 442 1000 V CAT III probe
Input channels 4 channels 4 channels
Analog bandwidth (–3 dB) 20 MHz with D9 to BNC adaptors
15 MHz with PicoConnect 441 probe
10 MHz
Rise time (calculated) 17.5 ns with D9 to BNC adaptors
23 ns with PicoConnect 441 probe
35 ns
Bandwidth limit 100 kHz or 1 MHz (selectable) 100 kHz or 1 MHz (selectable)
Vertical resolution, 12-bit mode 12 bits on most input ranges
11 bits on ±10 mV range
12 bits
Vertical resolution, 14-bit mode 14 bits on most input ranges
13 bits on ±20 mV range
12 bits on ±10 mV range
14 bits
Enhanced vertical resolution
12-bit mode
16 bits on most input ranges
15 bits on ±10 mV range
16 bits
Enhanced vertical resolution
14-bit mode
18 bits on most input ranges
17 bits on ±20 mV range
16 bits on ±10 mV range
18 bits
Input type Differential
9-pin D-subminiature, female
9-pin D-subminiature, female
Input characteristics 1 MΩ ±1%, in parallel with 17.5 pF ±1 pF (each differential input to ground).
< 1 pF difference between ranges.
16.7 MΩ ±1%, in parallel with 9.3 pF ±1 pF (each differential input to ground)
Input coupling AC/DC AC/DC
Input sensitivity
(10 vertical divisions)
2 mV/div to 10 V/div ±0.5 V/div to ±200 V/div
Input ranges (full scale) ±10 mV, ±20 mV, ±50 mV, ±100 mV, ±200 mV, ±500 mV,
±1 V, ±2 V, ±5 V, ±10 V, ±20 V, ±50 V
±2.5 V, ±5 V, ±12.5 V, ±25 V, ±50 V, ±125 V, ±250 V, ±500 V, ±1000 V
Input common mode range ±5 V on ±10 mV to ±500 mV ranges
±50 V on ±1 V to ±50 V ranges
±125 V on ±2.5 V to ±12.5 V ranges
±1000 V on ±25 V to ±1000 V ranges
DC accuracy (DC to 10 kHz) ±1% of full scale ±500 µV ±3% of full scale ±12.5 mV
Analog offset range ±250 mV on ±10 mV to ±500 mV ranges
±2.5 V on ±1 V to ±5 V ranges
±25 V on ±10 V to ±50 V ranges

±6.25 V on ±2.5 V to ±12.5 V ranges
±62.5 V on ±25 V to ±125 V ranges
±625 V on ±250 V to ±1000 V ranges

Analog offset accuracy 1% of offset setting in addition to basic DC accuracy 1% of offset setting in addition to basic DC accuracy
Overvoltage protection ±100 V DC + AC peak (any differential input to ground)
±100 V DC + AC peak (between differential inputs)
CAT III 1000V 
Maximum sampling rate (real-time)
12-bit mode
1 channel: 400 MS/s
2 channels: 200 MS/s
3 or 4 channels: 100 MS/s
Maximum sampling rate (real time)
14-bit mode
50 MS/s
Maximum sampling rate (USB streaming) 16.67 MS/s
Shortest real-time collection time, 12-bit mode

50 ns (5 ns/div)

Shortest real-time collection time, 14-bit mode

200 ns (20 ns/div)

Longest real-time collection time 50000 s (5000 s/div)
Capture memory (block mode) 256 MS shared between active channels
Capture memory (USB streaming mode) 100 MS (shared between active channels)
Waveform buffers 10000
Collection time accuracy ±50 ppm (5 ppm/year aging)
Sample jitter 3 ps RMS typical
ADC sampling Simultaneous sampling on all enabled channels
Dynamic performance (typical)
  Oscilloscope specifications Specifications with PicoConnect 442 1000 V CAT III probe
Crosstalk 2000:1 (DC to 20 MHz) 2000:1 (DC to 10 MHz)
Harmonic distortion at 100 kHz, 90% FSD < –70 dB on ±50 mV ranges and higher
< –60 dB on ±10 mV and ±20 mV ranges
< –70 dB
SFDR > 70 dB > 70 dB
ADC ENOB, 12-bit mode 10.8 bits 10.8 bits
ADC ENOB, 14-bit mode 11.8 bits 11.8 bits
Noise < 180 µV RMS on ±10 mV range < 5 mV RMS on ±2.5 V range
Bandwidth flatness (+0.1 dB, –3 dB) DC to full bandwidth (+0.1 dB, –3 dB) DC to full bandwidth
Common mode rejection ratio 60 dB typical, DC to 1 MHz 55 dB typical, DC to 1 MHz
Source Any input channel
Trigger modes None, auto, repeat, single, rapid
Advanced triggers Edge, window, pulse width, window pulse width, dropout, window dropout, interval, runt, logic
Trigger sensitivity Digital triggering provides up to 1 LSB accuracy up to full bandwidth
Maximum pre-trigger Up to 100% of capture size
Trigger time-delay range Up to 4 billion samples
Trigger rearm time in rapid trigger mode < 2 µs on fastest timebase
Max. waveforms in rapid trigger mode 10000 waveforms in a 12 ms burst
Probe compensation pins
Output level 4 V peak
Output impedance 610 Ω
Output waveforms Square wave
Output frequency 1 kHz
Overvoltage protection ±10 V
Spectrum analyzer
Frequency range DC to analog bandwidth of oscilloscope
Display modes Magnitude, average, peak hold
Windowing functions Rectangular, Gaussian, triangular, Blackman, Blackman-Harris, Hamming, Hann, flat-top
Number of FFT points Selectable from 128 to half available buffer memory in powers of 2, up to a maximum of 1 048 576 points
Math channels
General functions −x, x+y, x−y, x*y, x/y, x^y, sqrt, exp, ln, log, abs, norm, sign, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, derivative, integral, delay
Filter functions Lowpass, highpass, bandstop, bandpass
Graphing functions Frequency, duty cycle
Multi-waveform functions Min, max, average, peak
Operands Input channels, reference waveforms, time, constants, pi
Automatic measurements
Scope mode AC RMS, true RMS, frequency, cycle time, duty cycle, DC average, edge count, falling edge count, rising edge count, falling rate, rising rate, low pulse width, high pulse width, fall time, rise time, minimum, maximum, peak to peak
Spectrum mode Frequency at peak, amplitude at peak, average amplitude at peak, total power, THD %, THD dB, THD+N, SFDR, SINAD, SNR, IMD
Statistics Minimum, maximum, average and standard deviation
Serial decoding
Protocols 1-Wire, ARINC 429, CAN, CAN FD, DALI, DCC, DMX512, Ethernet 10Base-T, FlexRay, I²C, I²S, LIN, Manchester, MODBUS, PS/2, SENT, SPI, UART (RS-232 / RS-422 / RS-485), USB 1.0/1.1
Mask limit testing
Mask generation Numeric (automatic) or graphical (manual)
Statistics Pass/fail, failure count, total count
Available actions on mask fail Beep, play sound, stop capture, save waveform, trigger signal generator / AWG, run executable
Interpolation Linear or sin(x)/x
Persistence modes Digital color, analog intensity, custom, fast or none
Supplied drivers 32- and 64-bit drivers for Windows 7, 8 and 10
Linux drivers
macOS drivers
Example code C, C#, Excel VBA, VB.NET, LabVIEW, MATLAB and Python
Maximum sampling rate (USB streaming) 50 MS/s
Capture memory (USB streaming) Up to available PC memory
Segmented memory buffers > 1 million

Specifications for users writing their own software. See “Oscilloscope – horizontal” above for specifications when using PicoScope 6 software.

Windows software PicoScope for Windows
Software development kit (SDK)
Windows 7, 8 or 10 recommended (read more)
macOS software PicoScope for macOS (beta: feature list)
Software development kit (SDK)
OS versions: see release notes
Linux software PicoScope for Linux (beta: feature list)
Software development kit (SDK)
See Linux Software & Drivers for details of supported distributions
Languages Chinese (simplified), Chinese (traditional), Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish
Package contents PicoScope 4444 precision differential USB oscilloscope
Quick Start Guide
Universal mains power supply
USB 3.0 cable 1.8 m
Other accessories as requested at time of ordering
PC connectivity USB 3.0, compatible with USB 2.0, USB 1.1
Power requirements USB port or external DC PSU, depending on connected accessories
Dimensions 190 x 170 x 40 mm including connectors
Weight < 0.5 kg
Temperature range (operating) 0 °C to 45 °C
Temperature range, operating, for quoted accuracy 15 °C to 30 °C
Temperature range (storage) –20 °C to 60 °C
Humidity range (operating) 5% to 80% RH non-condensing
Humidity range (storage) 5% to 95% RH non-condensing
Altitude range Up to 2000 m
Pollution degree Pollution degree 2
Safety approvals Designed to EN 61010-1:2010
EMC approvals Tested to EN 61326-1:2013 and FCC Part 15 Subpart B
Environmental approvals RoHS and WEEE compliant
PC requirements Processor, memory and disk space: as required by the operating system
Port(s): USB 3.0 or USB 2.0
Languages supported Simplified Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish
Warranty 5 years