PicoScope 3000 Series

PC Oscilloscopes & Mixed Signal Oscilloscopes
Power, portability and performance

PC Oscilloscopes & Mixed Signal Oscilloscopes

Power, portability and performance

PicoScope 3000 Series USB-powered PC oscilloscopes are small, light, and portable and can easily slip into a laptop bag while offering a range of high-performance specifications.

These oscilloscopes offer 2 or 4 analog channels and a built-in function / arbitrary waveform generator. MSO models add 16 digital channels. Key performance specifications:

  • 200 MHz analog bandwidth
  • 1 GS/s real-time sampling
  • 512 MS buffer memory
  • 100,000 waveforms per second
  • 16 channel logic analyzer (MSO models)
  • Arbitrary waveform generator
  • USB 3.0 connected and powered
  • Serial decoding and mask testing as standard
  • Windows, Linux and Mac software

Supported by the advanced PicoScope 6 software, these devices offer an ideal, cost-effective package for many applications, including embedded systems design, research, test, education, service, and repair.

PicoScope 3000 mixed signal oscilloscopes

 

High bandwidth and sampling rate

Despite a compact size and low cost, there is no compromise on performance with bandwidths up to 200 MHz.  This bandwidth is matched by a real-time sampling rate of up to 1 GS/s, allowing detailed display of high frequencies. For repetitive signals, the maximum effective sampling rate can be boosted to 10 GS/s by using Equivalent Time Sampling (ETS) mode.

Other oscilloscopes have high maximum sampling rates, but without deep memory they cannot sustain these rates on long timebases. The PicoScope 3000 Series offers memory depths up to 512 million samples, more than any other oscilloscope in this price range, which enables the PicoScope 3406D MSO to sample at 1 GS/s all the way down to 50 ms/ div (500 ms total capture time).

Managing all this data calls for some powerful tools. There’s a set of zoom buttons, plus an overview window that lets you zoom and reposition the display by simply dragging with the mouse or touchscreen. Zoom factors of several million are possible.  Other tools such as the waveform buffer, mask limit test, serial decode and hardware acceleration work with the deep memory making the PicoScope 3000 series some of the most powerful oscilloscopes on the market.

Mixed-signal capability / logic analyzer

The PicoScope 3000D Series Mixed-Signal Oscilloscopes include 16 digital inputs so that you can view digital and analog signals simultaneously.

The digital inputs can be displayed individually or in named groups with binary, decimal or hexadecimal values shown in a bus-style display. A separate logic threshold from –5 V to +5 V can be defined for each 8-bit input port. The digital trigger can be activated by any bit pattern combined with an optional transition on any input. Advanced logic triggers can be set on either the analog or digital input channels, or both to enable complex mixed-signal triggering.

The digital inputs bring extra power to the serial decoding options.  You can decode serial data on all analog and digital channels simultaneously, giving you up to 20 channels of data.  You can for example decode multiple SPI, I²C, CAN bus, LIN bus and FlexRay signals all at the same time!

Application note: Debugging an I²C Bus with a PicoScope Mixed–Signal Oscilloscope

CAN bus serial decoding

Serial bus decoding and protocol analysis

PicoScope can decode 1-Wire, ARINC 429, CAN & CAN FD, BroadR-Reach (100BASE-T1)DALI, DCC, DMX512, Ethernet 10Base-T and 100Base-TX,  FlexRay, I²C, I²S, LIN, PS/2, Manchester, MIL-STD-1553 (beta), MODBUS, SENT, SPI, UART (RS-232 / RS-422 / RS-485), and USB 1.1 protocol data as standard, with more protocols in development and available in the future with free-of-charge software upgrades.

Graph format shows the decoded data (in hex, binary, decimal or ASCII) in a data bus timing format, beneath the waveform on a common time axis, with error frames marked in red. These frames can be zoomed to investigate noise or signal integrity issues.

Table format shows a list of the decoded frames, including the data and all flags and identifiers. You can set up filtering conditions to display only the frames you are interested in or search for frames with specified properties. The statistics option reveals more detail about the physical layer such as frame times and voltage levels. PicoScope can also import a spreadsheet to decode the data into user-defined text strings.

More information on Serial bus decoding and protocol analysis – overview >>

 

Arbitrary waveform and function generator

All PicoScope 3000D units have a built-in function generator (sine, square, triangle, DC level, white noise, PRBS etc.) on the front panel. PicoScope 3000D MSO models have the connector on the rear panel.

As well as basic controls to set level, offset and frequency, more advanced controls allow you to sweep over a range of frequencies. Combined with the spectrum peak hold option this makes a powerful tool for testing amplifier and filter responses.

Trigger tools allow one or more cycles of a waveform to be output when various conditions are met such as the scope triggering or a mask limit test failing.

A 14 bit 80 MS/s arbitrary waveform generator (AWG) is also included. AWG waveforms can be created or edited using the built-in AWG editor, imported from oscilloscope traces, or loaded from a spreadsheet.

More information on Arbitrary waveform generator (AWG) >>

 

FFT spectrum analyzer

The spectrum view plots amplitude against frequency and is ideal for finding noise, crosstalk or distortion in signals. The spectrum analyzer in PicoScope is of the Fast Fourier Transform (FFT) type which, unlike a traditional swept spectrum analyzer, can display the spectrum of a single, non-repeating waveform.

A full range of settings gives you control over the number of spectrum bands (FFT bins), window types, scaling (including log/log) and display modes (instantaneous, average, or peak-hold).

You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. A mask limit test can be applied to a spectrum and you can even use the AWG and spectrum mode together to perform swept scalar network analysis.

More information on Spectrum analyzer >>

Signal integrity

Most oscilloscopes are built down to a price. PicoScopes are built up to a specification.

Careful front-end design and shielding reduces noise, crosstalk and harmonic distortion. Years of oscilloscope design experience can be seen in improved bandwidth flatness and low distortion.

We are proud of the dynamic performance of our products, and unlike most oscilloscope manufacturers publish our specifications in detail. The result is simple: when you probe a circuit, you can trust in the waveform you see on the screen.

oscilloscope front end shielding

 

USB connectivity

The USB connection not only allows high-speed data acquisition and transfer, but also makes printing, copying, saving, and emailing your data from the field quick and easy. USB powering removes the need to carry around a bulky external power supply, making the kit even more portable for the engineer on the move.

PicoScope 3000 Series oscilloscopes feature a SuperSpeed USB 3.0 connection, making the already-optimized process of data transfer and waveform update rates even faster. Further benefits of a USB 3.0 connection include faster saving of waveforms and faster gap-free continuous streaming of up to 125 MS/s when using the SDK, while the scope is still backward-compatible with older USB systems.7

USB 3.0 PC oscilloscope

Oscilloscope — vertical (analog inputs)
PicoScope Model 3203D
& MSO
3204D
& MSO
3205D
& MSO
3206D
& MSO
3403D
& MSO
3404D
& MSO
3405D
& MSO
3406D
& MSO
Input channels 2 channels, BNC single-ended 4 channels, BNC single-ended
Bandwidth
(−3 dB)
50 MHz 70 MHz 100 MHz 200 MHz 50 MHz 70 MHz 100 MHz 200 MHz
Rise time (calculated) 7.0 ns 5.0 ns 3.5 ns 1.75 ns 7.0 ns 5.0 ns 3.5 ns 1.75 ns
Hardware bandwidth limiter Switchable, 20 MHz
Vertical resolution 8 bits
Input ranges ±20 mV to ±20 V full scale in 10 ranges
Input sensitivity 4 mV/div to 4 V/div in 10 vertical divisions
Input coupling AC / DC, programmable
Input characteristics 1 MΩ ±1%, in parallel with 14 pF ±1 pF
DC accuracy ±3% of full scale ±200 μV
Analog offset range
(vertical position adjust)
±250 mV (20 mV, 50 mV, 100 mV, 200 mV ranges)
±2.5 V (500 mV, 1 V, 2 V ranges)
±20 V (5 V, 10 V, 20 V ranges)
Offset adjust accuracy ±1% of offset setting, additional to DC accuracy
Overvoltage protection ±100 V (DC + AC peak)
Oscilloscope — vertical (digital inputs, MSOs only)
Input channels 16 channels (2 ports of 8 channels each)
Input connectors 2.54 mm pitch, 10 x 2 way connector
Maximum input frequency 100 MHz (200 Mb/s)
Minimum detectable pulse width 5 ns
Channel-to-channel skew 2 ns, typical
Minimum input slew rate 10 V/µs
Input impedance 200 kΩ ±2% ∥ 8 pF ±2 pF
Input dynamic range ±20 V
Overvoltage protection ±50 V
Digital threshold range ±5 V
Threshold grouping Two independent threshold controls: D0…D7 and D8…D15
Threshold selection TTL, CMOS, ECL, PECL, user-defined
Threshold accuracy < ±350 mV (inclusive of hysteresis)
Hysteresis < ±250 mV
Minimum input voltage swing 500 mV pk-pk
Oscilloscope — horizontal
PicoScope Model 3203D
& MSO
3204D
& MSO
3205D
& MSO
3206D
& MSO
3403D
& MSO
3404D
& MSO
3405D
& MSO
3406D
& MSO
Maximum sampling rate (real-time) 1 GS/s (1 analog channel)
500 MS/s (up to 2 analog channels or digital ports*)
250 MS/s (up to 4 analog channels or digital ports*)
125 MS/s (all other combinations)
Maximum effective sampling rate (repetitive signals)** 2.5 GS/s 5 GS/s 10 GS/s 2.5 GS/s 5 GS/s 10 GS/s
Maximum sampling rate
(continuous streaming mode)
17 MS/s in PicoScope software
125 MS/s when using the supplied SDK (PC-dependent)
Maximum capture rate 100,000 waveforms/second (PC-dependent)
Timebase ranges 1 ns/div to 5000 s/div 500 ps/div to 5000 s/div 1 ns/div to 5000 s/div 500 ps/div to 5000 s/div
Buffer memory 64 MS 128 MS 256 MS 512 MS 64 MS 128 MS 256 MS 512 MS
Buffer memory (streaming) 100 MS in PicoScope software.
Up to available PC memory when using supplied SDK.
Maximum buffer segments 10 000 in PicoScope software
130 000 using SDK 250 000 using SDK 500 000 using SDK 1 000 000 using SDK 130 000 using SDK 250 000 using SDK 500 000 using SDK 1 000 000 using SDK
Timebase accuracy ±50 ppm ±2 ppm ±50 ppm ±2 ppm
Timebase drift per year ±5 ppm ±1 ppm ±5 ppm ±1 ppm
Sample jitter 3 ps RMS typical
ADC sampling Simultaneous on all enabled channels

* A digital port consists of 8 digital channels, D0–7 or D8–15
** ETS mode on channel A only

Dynamic performance (typical)
PicoScope Model 3203D & MSO 3204D & MSO 3205D & MSO 3206D & MSO 3403D & MSO 3404D & MSO 3405D & MSO 3406D & MSO
Crosstalk Better than 400:1 up to full bandwidth (equal voltage ranges)
Harmonic distortion < −50 dB at 100 kHz full scale input
SFDR 52 dB typical at 100 kHz full scale input
(except ±20 mV range: 44 dB)
Noise 110 µV RMS 160 µV RMS 110 µV RMS 160 µV RMS
(typical, on ±20 mV range)
Bandwidth flatness +0.3 dB, −3 dB from DC to full bandwidth, typical
Triggering – general
Source Analog channels, EXT trigger (not MSOs), digital channels (MSOs only)
Trigger modes None, auto, repeat, single, rapid (segmented memory)
Maximum pre–trigger capture Up to 100% of capture size
Maximum post–trigger delay Up to 4 billion samples (selectable in 1 sample steps)
Trigger rearm time < 0.7 µs at 1 GS/s sampling rate
Maximum trigger rate Up to 10,000 waveforms in a 6 ms burst at 1 GS/s sampling rate, typical
Triggering – analog channels
Advanced triggers Edge, window, pulse width, window pulse width, dropout, window dropout, interval, logic, runt pulse
Trigger types (ETS mode) Rising edge, falling edge (Ch A only)
Trigger sensitivity Digital triggering provides 1 LSB accuracy up to full bandwidth of scope
Trigger sensitivity (ETS mode) 10 mV p-p typical (at full bandwidth)
Triggering – EXT trigger input, not MSO models
Connector type Front panel BNC
Advanced triggers Edge, pulse width, dropout, interval, logic
Input characteristics 1 MΩ || 14 pF
Bandwidth 50 MHz 70 MHz 100 MHz 200 MHz 50 MHz 70 MHz 100 MHz 200 MHz
Threshold range ±5 V
Coupling DC
Overvoltage protection ±100 V (DC + AC peak)
Triggering – digital channels, MSO models only
Source D0 to D15
Trigger types Pattern, edge, combined pattern and edge, pulse width, dropout, interval, logic
Function generator
Standard output signals Sine, square, triangle, DC voltage, ramp, sinc, Gaussian, half-sine, white noise, PRBS
Standard signal frequency DC to 1 MHz
Sweep modes Up, down, dual with selectable start / stop frequencies and increments
Triggering Free-run, or from 1 to 1 billion counted waveform cycles or frequency sweeps. Triggered from scope trigger or manually.
Output frequency accuracy As oscilloscope
Output frequency resolution < 0.01 Hz
Output voltage range ±2 V
Output voltage adjustment Signal amplitude and offset adjustable in approximate 1 mV steps within overall ±2 V range
Amplitude flatness < 0.5 dB to 1 MHz typical
DC accuracy ±1% of full scale
SFDR > 60 dB 10 kHz full scale sine wave
Output impedance 600 Ω
Connector type Front panel BNC (non-MSO models)
Rear panel BNC (MSO models)
Overvoltage protection ±20 V
Arbitrary waveform generator
Update rate 20 MS/s
Buffer size 32 kS
Resolution 12 bits (output step size approximately 1 mV)
Bandwidth > 1 MHz
Rise time (10% to 90%) < 120 ns

Other AWG specifications as function generator

Probe compensation output
Impedance 600 Ω
Frequency 1 kHz
Level 2 V pk-pk, typical
Spectrum analyzer
Frequency range DC to maximum bandwidth of scope
Display modes Magnitude, peak hold, average
X axis Linear or log 10
Y axis Logarithmic (dbV, dBu, dBm, arbitrary) or linear (volts)
Windowing functions Rectangular, Gaussian, triangular, Blackman, Blackman–Harris, Hamming, Hann, flat-top
Number of FFT points Selectable from 128 to 1 million in powers of 2
Math channels
General functions −x, x+y, x−y, x*y, x/y, x^y, sqrt, exp, ln, log, abs, norm, sign, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, derivative, integral, delay
Filter functions Low pass, high pass, band stop, band pass
Graphing functions Frequency, duty cycle
Multi-waveform functions Min, max, average, peak
Operands All analog and digital input channels, reference waveforms, time, constants, pi
Automatic measurements (analog channels only)
Oscilloscope mode AC RMS, true RMS, cycle time, DC average, duty cycle, falling rate, fall time, frequency, high pulse width, low pulse width, maximum, minimum, peak to peak, rise time, rising rate
Spectrum mode Frequency at peak, amplitude at peak, average amplitude at peak, total power, THD %, THD dB, THD+N, SFDR, SINAD, SNR, IMD
Statistics Minimum, maximum, average, standard deviation
Serial decoding
Protocols 1-Wire, ARINC 429, CAN, CAN FD, DALI, DCC, DMX512, Ethernet (10BaseT, 100BaseTX), FlexRay, I²C, I²S, LIN, Manchester, MODBUS, PS/2, SENT, SPI, UART/RS-232, USB 1.0
Mask limit testing
Statistics Pass/fail, failure count, total count
Display
Interpolation Linear or sin(x)/x
Persistence modes Digital color, analog intensity, fast, custom
Miscellaneous
Output file formats BMP, CSV, GIF, JPEG, MATLAB 4, PDF, PNG, PSDATA, PSSETTINGS, TXT
Output functions Copy to clipboard, print
Software
Windows software PicoScope for Windows
Software development kit (SDK)
Windows 7, 8 or 10 recommended (read more)
macOS software PicoScope for macOS (beta: feature list)
Software development kit (SDK)
OS versions: see release notes
Linux software PicoScope for Linux (beta: feature list)
Software development kit (SDK)
See Linux Software & Drivers for details of supported distributions
Languages Chinese (simplified), Chinese (traditional), Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish
Physical specifications
Dimensions 190 mm x 170 mm x 40 mm (including connectors)
Weight < 0.5 kg
Temperature range Operating: 0 °C to 40 °C (15 °C to 30 °C for stated accuracy).
Storage: –20 °C to 60 °C
Humidity range Operating: 5% RH to 80% RH non-condensing.
Storage: 5% RH to 95% RH non-condensing
Altitude range Up to 2000 m
Pollution degree 2
General
Package contents PicoScope 3000D Series oscilloscope
2 or 4 switchable 10:1/1:1 oscilloscope probes
Quick Start Guide
USB 3.0 cable
AC power adaptor (4-channel models only)
TA136 digital cable (MSOs only)
2 × TA139 pack of 10 logic test clips (MSOs only)
PC connectivity USB 3.0 SuperSpeed (USB 2.0 compatible)
Power requirements Powered from a single USB 3.0 port or two USB 2.0 ports.
4-channel models: AC adaptor included for use with USB ports that supply less than 1200 mA
Safety approvals Designed to EN 61010-1:2010
EMC approvals Tested to EN 61326-1:2006 and FCC Part 15 Subpart B
Environmental approvals RoHS and WEEE compliant
Warranty 5 years